Endothelial SUR-8 Acts in an ERK-Independent Pathway During Atrioventricular Cushion Development

نویسندگان

  • Jing Yi
  • Muyun Chen
  • Xiaohui Wu
  • Xiao Yang
  • Tian Xu
  • Yuan Zhuang
  • Min Han
  • Rener Xu
چکیده

SUR-8, a conserved leucine-rich repeats protein, was first identified as a positive regulator of Ras pathway in Caenorhabditis elegans. Biochemical studies indicated that SUR-8 interacts with Ras and Raf, leading to the elevated ERK activity. However, the physiological role of SUR-8 during mammalian development remains unclear. Here we found that germline deletion of SUR-8 in mice resulted in early embryonic lethality. Inactivated SUR-8 specifically in mouse endothelial cells (ECs) revealed that SUR-8 is essential for embryonic heart development. SUR-8 deficiency in ECs resulted in late embryonic lethality, and the mutant mice displayed multiple cardiac defects. The reduced endothelial-mesenchymal transformation (EMT) and the reduced mesenchyme proliferation phase were observed in the atrioventricular canal (AVC) within the mutant hearts, leading to the formation of hypoplastic endocardial cushions. However, ERK activation did not appear to be affected in mutant ECs, suggesting that SUR-8 may act in an ERK-independent pathway to regulate AVC development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of heart valves requires Gata4 expression in endothelial-derived cells.

Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart disease. At localized swellings of extracellular matrix known as the endocardial cushions, the endothelial lining of the heart undergoes an epithelial to mesenchymal transition (EMT) to form the mesenchymal progenitors of the AV valves. Further growth and dif...

متن کامل

Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart.

An epithelial-mesenchymal cell transformation occurs during the development of the endocardial cushions in the atrioventricular (AV) canal of the heart. We hypothesized that the transcription factor Slug is required for this epithelial-mesenchymal cell transformation since Slug is required for similar transformations during gastrulation and neural crest differentiation in chicken embryos. We fo...

متن کامل

Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation.

Bone morphogenetic protein 4 (BMP4) is crucial for the formation of FLK1-expressing (FLK1(+)) mesodermal cells. To further define the requirement for BMP signaling in the differentiation of blood, endothelial and smooth muscle cells from FLK1(+) mesoderm, we inactivated Alk3 (Bmpr1a) in FLK1(+) cells by crossing Alk3(floxed/floxed) and Flk1(+/Cre)Alk3(+/floxed) mice. Alk3 conditional knockout (...

متن کامل

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Noonan syndrome mutation Q79R in Shp2 increases proliferation of valve primordia mesenchymal cells via extracellular signal-regulated kinase 1/2 signaling.

The molecular pathways regulating valve development are only partially understood. Recent studies indicate that dysregulation of mitogen-activated protein kinase (MAPK) signaling might play a major role in the pathogenesis of congenital valvular malformations, and, in this study, we explored the role of extracellular signal-regulated kinase (ERK) 1/2 activation in valve primordia expressing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 239  شماره 

صفحات  -

تاریخ انتشار 2010